Volume 29 Issue 5
Oct.  2019
Turn off MathJax
Article Contents

LIU Yangyang, YANG Yue, WANG Qian, KHALIFA Muhammad, ZHANG Zhaoying, TONG Linjing, LI Jianlong, SHI Aiping. Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale[J]. Chinese Geographical Science, 2019, 20(5): 725-740. doi: 10.1007/s11769-019-1063-x
Citation: LIU Yangyang, YANG Yue, WANG Qian, KHALIFA Muhammad, ZHANG Zhaoying, TONG Linjing, LI Jianlong, SHI Aiping. Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale[J]. Chinese Geographical Science, 2019, 20(5): 725-740. doi: 10.1007/s11769-019-1063-x

Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale

doi: 10.1007/s11769-019-1063-x
Funds:  Under the auspices of Asia Pacific Network for Global Change Research (APN), Global Change Fund Project (No. ARCP2015-03CMY-Li), National Natural Science Foundation of China (No. 41271361, 41501575), National Key Research and De-velopment Project (No. 2018YFD0800201), Key Project of Chinese National Programs for Fundamental Research and Development (No. 2010CB950702)
More Information
  • Corresponding author: LI Jianlong.E-mail:jlli2008@nju.edu.cn;SHI Aiping,shap@ujs.edu.cn
  • Received Date: 2018-09-26
  • Rev Recd Date: 2018-11-18
  • Publish Date: 2019-10-01
  • Understanding the net primary productivity (NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the globe. Then, we used the Carnegie-Ames-Stanford Approach (CASA) model to estimate global grassland NPP and explore the spatio-temporal variations of grassland NPP in response to climate change from 1982 to 2008. Results showed that the largest area of grassland distribution during the study period was in Asia (1737.23×104 km2), while the grassland area in Europe was relatively small (202.83×104 km2). Temporally, the total NPP increased with fluctuations from 1982 to 2008, with an annual increase rate of 0.03 Pg C/yr. The total NPP experienced a significant increasing trend from 1982 to 1995, while a decreasing trend was observed from 1996 to 2008. Spatially, the grassland NPP in South America and Africa were higher than the other regions, largely as a result of these regions are under warm and wet climatic conditions. The highest mean NPP was recorded for savannas (560.10 g C/(m2·yr)), whereas the lowest was observed in open shrublands with an average NPP of 162.53 g C/(m2·yr). The relationship between grassland NPP and annual mean temperature and annual precipitation (AMT, AP, respectively) varies with changes in AP, which indicates that, grassland NPP is more sensitive to precipitation than temperature.
  • [1] Alexandrov G A, Oikawa T, Esser G, 1999. Estimating terrestrial NPP:what the data say and how they may be interpreted? Ecological Modelling, 117(2-3):361-369. doi: 10.1016/s0304-3800(99)00019-8
    [2] Barford C C, Wofsy S C, Goulden M L et al., 2001. Factors con-trolling long-and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science, 294(5547):1688-1691. doi: 10.1126/science.1062962
    [3] Beer C, Reichstein M, Tomelleri E et al., 2010. Terrestrial gross carbon dioxide uptake:global distribution and covariation with climate. Science, 329(5993):834-838. doi:10.1126/science. 1184984
    [4] Bolin B, 1977. Changes of land biota and their importance for the carbon cycle. Science, 196(4290):613-615. doi: 10.1126/science.196.4290.613
    [5] Chen L Y, Li H, Zhang P J et al., 2015. Climate and native grass-land vegetation as drivers of the community structures of shrub-encroached grasslands in Inner Mongolia, China. Land-scape Ecology, 30(9):1627-1641. doi: 10.1007/s10980-014-0044-9
    [6] Chen T, van der Werf G R, de Jeu R A M et al., 2013. A global analysis of the impact of drought on net primary productivity. Hydrology and Earth System Sciences, 17(10):3885-3894. doi: 10.5194/hessd-10-2429-2013
    [7] Chen Y Z, Mu S J, Sun Z G et al., 2016. Grassland carbon se-questration ability in China:a new perspective from terrestrial aridity zones. Rangeland Ecology & Management, 69(1):84-94. doi: 10.1016/j.rama.2015.09.003
    [8] Chen Y Z, Li J L, Ju W M et al., 2017. Quantitative assessments of water-use efficiency in Temperate Eurasian Steppe along an aridity gradient. PLoS One, 12(7):e0179875. doi: 10.1371/journal.pone.0179875
    [9] Chen Zhenghua, Ma Qingyuan, Wang Jian et al., 2008. Estimation of Heihe Basin net primary productivity using the CASA model. Journal of Natural Resources, 23(4):263-273. (in Chinese)
    [10] DeLucia E H, Drake J E, Thomas R B et al., 2007. Forest carbon use efficiency:is respiration a constant fraction of gross primary production? Global Change Biology, 13(6):1157-1167. doi: 10.1111/j.1365-2486.2007.01365.x
    [11] Dong J R, Kaufmann R K, Myneni R B et al., 2003. Remote sensing estimates of boreal and temperate forest woody bio-mass:carbon pools, sources, and sinks. Remote Sensing of En-vironment, 84(3):393-410. doi:10.1016/s0034-4257(02) 00130-x
    [12] Field C B, Randerson J T, Malmström C M, 1995. Global net primary production:combining ecology and remote sensing. Remote Sensing of Environment, 51(1):74-88. doi: 10.1016/0034-4257(94)00066-v
    [13] Gang C, Zhou W, Wang Z et al., 2015. Comparative assessment of grassland NPP dynamics in response to climate change in China, North America, Europe and Australia from 1981 to 2010. Journal of Agronomy and Crop Science, 201(1):57-68. doi: 10.1111/jac.12088
    [14] Gang C, Wang Z, Zhou W et al., 2016b. Assessing the spatiotem-poral dynamic of global grassland water use efficiency in re-sponse to climate change from 2000 to 2013. Journal of Agronomy and Crop Science, 202(5):343-354. doi: 10.1111/jac.12137
    [15] Gang C C, Wang Z Q, Chen Y Z et al., 2016a. Drought-induced dynamics of carbon and water use efficiency of global grass-lands from 2000 to 2011. Ecological Indicators, 67:788-797. doi: 10.1016/j.ecolind.2016.03.049
    [16] Gang C C, Zhao W, Zhao T et al., 2018. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China. Science of the Total Environment, 645:827-836. doi: 10.1016/j.scitotenv.2018.07.161
    [17] Gao Q Z, Schwartz M W, Zhu W Q et al., 2016. Changes in global grassland productivity during 1982 to 2011 attributable to climatic factors. Remote Sensing, 8(5):384. doi: 10.3390/rs8050384
    [18] Grace J, José J S, Meir P et al., 2006. Productivity and carbon fluxes of tropical savannas. Journal of Biogeography, 33(3):387-400. doi: 10.1111/j.1365-2699.2005.01448.x
    [19] Hicke J A, Asner G P, Randerson J T et al., 2002. Trends in North American net primary productivity derived from satellite ob-servations, 1982-1998. Global Biogeochemical Cycles, 16(2):2-1-2-14. doi: 10.1029/2001gb001550
    [20] Hilker T, Lyapustin A I, Tucker C J et al., 2014. Vegetation dynam-ics and rainfall sensitivity of the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 111(45):16041-16046. doi: 10.1073/pnas.1404870111
    [21] Joos F, Prentice I C, Sitch S et al., 2001. Global warming feed-backs on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) Emission Scenarios. Global Biogeochemical Cycles, 15(4):891-907. doi: 10.1029/2000gb001375
    [22] Keenan T F, Baker I, Barr A et al., 2012. Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange. Global Change Biology, 18(6):1971-1987. doi: 10.1111/j.1365-2486.2012.02678.x
    [23] Khalifa M, Elagib N A, Ribbe L et al., 2018. Spatio-temporal variations in climate, primary productivity and efficiency of water and carbon use of the land cover types in Sudan and Ethiopia. Science of the Total Environment, 624:790-806. doi: 10.1016/j.scitotenv.2017.12.090
    [24] Knutson T R, Delworth T L, Dixon K W et al., 1999. Model as-sessment of regional surface temperature trends (1949-1997). Journal of Geophysical Research:Atmospheres, 104(D24):30981-30996. doi: 10.1029/1999jd900965
    [25] Liang W, Yang Y T, Fan D M et al., 2015. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agricultural and Forest Meteorology, 204:22-36. doi:10.1016/j.agrformet.2015.01. 015
    [26] Lieth H, 1975. Modeling the primary productivity of the world. In:Lieth H, Whittaker R H (eds). Primary Productivity of the Biosphere. Berlin, Heidelberg:Springer, 237-263. doi: 10.1007/978-3-642-80913-2_12
    [27] Lin X H, Han P F, Zhang W et al., 2017. Sensitivity of alpine grassland carbon balance to interannual variability in climate and atmospheric CO2 on the Tibetan Plateau during the last century. Global and Planetary Change, 154:23-32. doi: 10.1016/j.gloplacha.2017.05.008
    [28] Ling H, He B, Chen A F et al., 2016. Drought dominates the in-terannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Scientific Reports, 6:24639. doi: 10.1038/srep24639
    [29] Liu J, Chen J M, Cihlar J et al., 2002. Net primary productivity mapped for Canada at 1-km resolution. Global Ecology and Biogeography, 11(2):115-129. doi:10.1046/j.1466-822x. 2002.00278.x
    [30] Liu Y Y, Wang Q, Zhang Z Y et al., 2019a. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Science of the Total Environment, 690:27-39. doi: 10.1016/j.scitotenv.2019.06.503
    [31] Liu Y Y, Yang Y, Wang Q et al., 2019b. Evaluating the responses of net primary productivity and carbon use efficiency of global grassland to climate variability along an aridity gradient. Science of the Total Environment, 652:671-682. doi: 10.1016/j.scitotenv.2018.10.295
    [32] Liu Y Y, Zhang Z Y, Tong L J et al., 2019c. Assessing the effects of climate variation and human activities on grassland degra-dation and restoration across the globe. Ecological Indicators, 106:105504. doi: 10.1016/j.ecolind.2019.105504
    [33] Mao D H, Wang Z M, Li L et al., 2014. Spatiotemporal dynamics of grassland aboveground net primary productivity and its as-sociation with climatic pattern and changes in Northern China. Ecological Indicators, 41:40-48. doi:10.1016/j.ecolind.2014. 01.020
    [34] Melillo J M, McGuire A D, Kicklighter D W et al., 1993. Global climate change and terrestrial net primary production. Nature, 363(6426):234-240. doi: 10.1038/363234a0
    [35] Nemani R R, Keeling C D, Hashimoto H et al., 2003. Cli-mate-driven increases in global terrestrial net primary produc-tion from 1982 to 1999. Science, 300(5625):1560-1563. doi: 10.1126/science.1082750
    [36] Potter C, Klooster S, Genovese V, 2012. Net primary production of terrestrial ecosystems from 2000 to 2009. Climatic Change, 115(2):365-378. doi: 10.1007/s10584-012-0460-2
    [37] Potter C S, Randerson J T, Field C B et al., 1993. Terrestrial eco-system production:a process model based on global satellite and surface data. Global Biogeochem. Cycles, 7:811-841.
    [38] Raich J W, Rastetter E B, Melillo J M et al., 1991. Potential net primary productivity in South America:application of a global model. Ecological Applications, 1(4):399-429. doi: 10.2307/1941899
    [39] Schimel D S, House J I, Hibbard K A et al., 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414(6860):169-172. doi: 10.1038/35102500
    [40] Scurlock J M O, Johnson K, Olson R J, 2002. Estimating net primary productivity from grassland biomass dynamics meas-urements. Global Change Biology, 8(8):736-753. doi: 10.1046/j.1365-2486.2002.00512.x
    [41] Toms J D, Lesperance M L, 2003. Piecewise regression:a tool for identifying ecological thresholds. Ecology, 84(8):2034-2041. doi: 10.1890/02-0472
    [42] Uchijima Z, Seino H, 1985. Agroclimatic Evaluation of net primary productivity of natural vegetations:(1) chikugo model for eval-uating net primary productivity. Journal of Agricultural Meteor-ology, 40(4):343-352. doi: 10.2480/agrmet.40.343
    [43] Xia J Z, Liu S G, Liang S L et al., 2014. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sensing, 6(3):1783-1802. doi: 10.3390/rs6031783
    [44] Xing Xiaoxu, Xu Xingliang, Zhang Xianzhou et al., 2010. Simu-lating net primary production of grasslands in northeastern Asia using MODIS data from 2000 to 2005. Journal of Geo-graphical Sciences, 20(2):193-204. doi: 10.1007/s11442-010-0193-y
    [45] Xu H J, Wang X P, Zhang X X, 2016. Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecological Engineering, 92:251-259. doi: 10.1016/j.ecoleng.2016.04.005
    [46] Yang Y, Wang Z Q, Li J L et al., 2017. Assessing the spatiotem-poral dynamic of global grassland carbon use efficiency in re-sponse to climate change from 2000 to 2013. Acta Oecologica, 81:22-31. doi: 10.1016/j.actao.2017.04.004
    [47] Yang Y H, Fang J Y, Ma W H et al., 2008. Relationship between variability in aboveground net primary production and precip-itation in global grasslands. Geophysical Research Letters, 35(23):L23710. doi: 10.1029/2008gl035408
    [48] Zeng B, Yang T B, 2008. Impacts of climate warming on vegeta-tion in Qaidam Area from 1990 to 2003. Environmental Mon-itoring and Assessment, 144(1-3):403-417. doi: 10.1007/s10661-007-0003-x
    [49] Zhang Y, Zhang C B, Wang Z Q et al., 2016. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Science of the Total Environment, 563-564:210-220. doi: 10.1016/j.scitotenv.2016.03.223
    [50] Zhao M S, Running S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994):940-943. doi:10.1126/science. 1192666
    [51] Zheng Zhong, Qi Yuan, Pan Xiaoduo et al., 2013. Estimating the grassland NPP in Qinghai Lake Basin based on WRF model data and CASA model. Journal of Glaciology and Geocryolo-gy, 35(2):465-474. (in Chinese)
    [52] Zhou W, Yang H, Huang L et al., 2017. Grassland degradation remote sensing monitoring and driving factors quantitative as-sessment in China from 1982 to 2010. Ecological Indicators, 83:303-313. doi: 10.1016/j.ecolind.2017.08.019
    [53] Zhou W, Yang H, Zhou L et al., 2018. Dynamics of grassland carbon sequestration and its coupling relation with hydrothermal factor of Inner Mongolia. Ecological Indicators, 95:1-11. doi: 10.1016/j.ecolind.2018.07.008
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(262) PDF downloads(313) Cited by()

Proportional views
Related

Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale

doi: 10.1007/s11769-019-1063-x
Funds:  Under the auspices of Asia Pacific Network for Global Change Research (APN), Global Change Fund Project (No. ARCP2015-03CMY-Li), National Natural Science Foundation of China (No. 41271361, 41501575), National Key Research and De-velopment Project (No. 2018YFD0800201), Key Project of Chinese National Programs for Fundamental Research and Development (No. 2010CB950702)
    Corresponding author: LI Jianlong.E-mail:jlli2008@nju.edu.cn;SHI Aiping,shap@ujs.edu.cn

Abstract: Understanding the net primary productivity (NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the globe. Then, we used the Carnegie-Ames-Stanford Approach (CASA) model to estimate global grassland NPP and explore the spatio-temporal variations of grassland NPP in response to climate change from 1982 to 2008. Results showed that the largest area of grassland distribution during the study period was in Asia (1737.23×104 km2), while the grassland area in Europe was relatively small (202.83×104 km2). Temporally, the total NPP increased with fluctuations from 1982 to 2008, with an annual increase rate of 0.03 Pg C/yr. The total NPP experienced a significant increasing trend from 1982 to 1995, while a decreasing trend was observed from 1996 to 2008. Spatially, the grassland NPP in South America and Africa were higher than the other regions, largely as a result of these regions are under warm and wet climatic conditions. The highest mean NPP was recorded for savannas (560.10 g C/(m2·yr)), whereas the lowest was observed in open shrublands with an average NPP of 162.53 g C/(m2·yr). The relationship between grassland NPP and annual mean temperature and annual precipitation (AMT, AP, respectively) varies with changes in AP, which indicates that, grassland NPP is more sensitive to precipitation than temperature.

LIU Yangyang, YANG Yue, WANG Qian, KHALIFA Muhammad, ZHANG Zhaoying, TONG Linjing, LI Jianlong, SHI Aiping. Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale[J]. Chinese Geographical Science, 2019, 20(5): 725-740. doi: 10.1007/s11769-019-1063-x
Citation: LIU Yangyang, YANG Yue, WANG Qian, KHALIFA Muhammad, ZHANG Zhaoying, TONG Linjing, LI Jianlong, SHI Aiping. Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale[J]. Chinese Geographical Science, 2019, 20(5): 725-740. doi: 10.1007/s11769-019-1063-x
Reference (53)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return