SERASINGHE PATHIRANAGE Inoka Sandamali, Lakshmi N. KANTAKUMAR, SUNDARAMOORTHY Sivanantharajah. Remote Sensing Data and SLEUTH Urban Growth Model: As Decision Support Tools for Urban Planning[J]. Chinese Geographical Science, 2018, 28(2): 274-286. doi: 10.1007/s11769-018-0946-6
Citation: SERASINGHE PATHIRANAGE Inoka Sandamali, Lakshmi N. KANTAKUMAR, SUNDARAMOORTHY Sivanantharajah. Remote Sensing Data and SLEUTH Urban Growth Model: As Decision Support Tools for Urban Planning[J]. Chinese Geographical Science, 2018, 28(2): 274-286. doi: 10.1007/s11769-018-0946-6

Remote Sensing Data and SLEUTH Urban Growth Model: As Decision Support Tools for Urban Planning

doi: 10.1007/s11769-018-0946-6
  • Received Date: 2017-05-02
  • Rev Recd Date: 2017-08-29
  • Publish Date: 2018-04-27
  • Sri Lanka is experiencing speedy urbanization by converting the agriculture land and other natural land cover into built-up land. The urban population of Sri Lanka is expected to reach to 60% by 2030 from 14% in 2010. The rapid growth in urban population and urban areas in Sri Lanka may cause serious socioeconomic disparities, if they are not handled properly. Thus, planners in Sri Lanka are in need of information about past and future urban growth patterns to plan a better and sustainable urban future for Sri Lanka. In this paper, we analyzed the characteristics of past land use and land cover trends in Matara City of Sri Lanka from 1980 to 2010 to assess the historic urban dynamics. The land use change detection analysis based on remote sensing datasets reveal that the conversion of homestead/garden and paddy into urban land is evident in Matara City. The historic urban trends are projected into the near future by using SLEUTH urban growth model to identify the hot spots of future urbanization and as well as the urban growth patterns in Matara City up to the basic administrative level, i.e., Grama Niladari Divisions (GND). The urban growth simulations for the year 2030 reveal that 29 GNDs out of 66 GNDs in Matara City will be totally converted into urban land. Whereas, 28 GNDs will have urban land cover from 75% to 99% by 2030. The urban growth simulations are further analyzed with respect to the proposed Matara city development plan by the Urban Development Authority (UDA) of Sri Lanka. The results show that the UDA's city development plan of Matara will soon be outpaced by rapid urbanization. Based on the calibration and validation results, the SLEUTH model proved to be a useful planning tool to understand the near future urbanization of Sri Lankan cities.
  • [1] Abd-Allah M M A, 2007. Modelling Urban Dynamics using Geographic Information Systems, Remote Sensing and Urban Growth Models. Cairo:Cairo University.
    [2] Al-shalabi M, Billa L, Pradhan B et al., 2013. Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models:the case of Sana'a metropolitan city, Yemen. Environmental Earth Sciences, 70(1):425-437. doi: 10.1007/s12665-012-2137-6
    [3] Ayazli I E, Kilic F, Demir H, 2014. A simulation model of urban growth driven by the bosphorus bridges. In:Popovich V et al.(eds). Information Fusion and Geographic Information Systems. Berlin Heidelberg:Springer, 237-248.
    [4] Batty M, Xie Y C, Sun Z L, 1999. Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems, 23(3):205-233. doi:10.1016/S 0198-9715(99)00015-0
    [5] Bhatta B, 2009. Analysis of urban growth pattern using remote sensing and GIS:a case study of Kolkata, India. International Journal of Remote Sensing, 30(18):4733-4746. doi: 10.1080/01431160802651967
    [6] Birch E L, Wachter S M, 2011. Global Urbanization. Philadelphia, PA:University of Pennsylvania Press.
    [7] Butsch C, Kumar S, Wagner P Det al., 2017. Growing ‘smart’? Urbanization processes in the pune urban agglomeration. Sustainability, 9:2335. https://doi.org/10.3390/su9122335
    [8] Chaudhuri G, Clarke K, 2013. The SLEUTH land use change model:a review. Environmental Resources Research, 1(1):88-105. doi: 10.22069/IJERR.2013.1688
    [9] Clarke K C, Hoppen S, Gaydos L, 1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay Area. Environment and Planning B:Planning and Design, 24(2):247-261. doi: 10.1068/b240247
    [10] Clarke K C, Gaydos L J, 1998. Loose-coupling a cellular automaton model and GIS:long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12(7):699-714. doi: 10.1080/136588198241617
    [11] Coppin P, Jonckheere I, Nackaerts K et al., 2004. Digital change detection methods in ecosystem monitoring:a review. International Journal of Remote sensing, 25:1565-1596. https://doi.org/10.1080/0143116031000101675
    [12] Dietzel C, Clarke K C, 2007. Toward optimal calibration of the SLEUTH land use change model. Transactions in GIS, 11(1):29-45. doi: 10.1111/j.1467-9671.2007.01031.x
    [13] El-Hattab M M, 2016. Applying post classification change detection technique to monitor an Egyptian coastal zone (Abu Qir Bay). The Egyptian Journal of Remote Sensing and Space Science, 19:23-36. https://doi.org/10.1016/j.ejrs.2016.02.002
    [14] Feng H H, Liu H P, Lü Y, 2012. Scenario prediction and analysis of urban growth using SLEUTH model. Pedosphere, 22, 206-216. https://doi.org/10.1016/S1002-0160(12)60007-1
    [15] Gandhi S I, Suresh V M, 2012. Prediction of urban sprawl in Hyderabad City using spatial model, remote sensing and GIS techniques. International Journal of Scientific Research, 1(2):80-81. doi: 10.15373/22778179
    [16] Goers L, Lawson J, Garen E, 2012. Economic drivers of tropical deforestation for agriculture. Managing Forest Carbon in a Changing Climate. Dordrecht:Springer, 305-320. https://doi.org/10.1007/978-94-007-2232-3_14
    [17] Goldstein N C, 2004. Brains versus brawn-comparative strategies for the calibration of a cellular automata-based urban growth model. In:Atkinson P M et al. (eds). Citation Information. Boca Ration, FL:CRC Press, 249-272. doi:10.1201/97814 20038101.ch18
    [18] Goodarzi M S, Sakieh Y, Navardi S, 2017. Scenario-based urban growth allocation in a rapidly developing area:a modeling approach for sustainability analysis of an urban-coastal coupled system. Environment Development and Sustainability, 19, 1103-1126. https://doi.org/10.1007/s10668-016-9784-9
    [19] Grimm N B, Faeth S H, Golubiewski N E et al., 2008. Global change and the ecology of cities. Science, 319(5864):756-760. doi: 10.1126/science.1150195
    [20] Jafarnezhad J, Salmanmahiny A, Sakieh Y, 2016. Subjectivity versus objectivity:comparative study between Brute Force method and Genetic Algorithm for calibrating the SLEUTH urban growth model. Journal of Urban Planning and Development, 142(3):05015015. doi: 10.1061/(ASCE)UP.1943-5444.0000307
    [21] Jantz C A, Goetz S J, Shelley M K, 2004. Using the sleuth urban growth model to simulate the impacts of future policy scenarios on urban land use in the Baltimore-Washington metropolitan area. Environment and Planning B:Planning and Design, 31(2):251-271. doi: 10.1068/b2983
    [22] Jantz C A, Goetz S J, Donato D et al., 2010. Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Computers, Environment and Urban Systems, 34(1):1-16. doi:10.1016/j.compenvurbsys. 2009.08.003
    [23] Jat M K, Choudhary M, Saxena A, 2017. Urban growth assessment and prediction using RS, GIS and SLEUTH model for a heterogeneous urban fringe. The Egyptian Journal of Remote Sensing and Space Science. doi: 10.1016/j.ejrs.2017.02.002
    [24] Kantakumar L N, Neelamsetti P, 2015. Multi-temporal land use classification using hybrid approach. The Egyptian Journal of Remote Sensing and Space Science, 18(2):289-295, doi:10. 1016/j.ejrs.2015.09.003
    [25] Kantakumar L N, Kumar S, Schneider K, 2016. Spatiotemporal urban expansion in Pune metropolis, India using remote sensing. Habitat International, 51:11-22. doi:10.1016/j. habitatint.2015.10.007
    [26] KantaKumar N L, Sawant N G, Kumar S, 2011. Forecasting urban growth based on GIS, RS and SLEUTH model in Pune metropolitan area. International Journal of Geomatics and Geosciences, 2(2):568-579.
    [27] Kuang Wenhui, 2011. Simulating dynamic urban expansion at regional scale in Beijing-Tianjin-Tangshan Metropolitan Area. Journal of Geographical Sciences, 21(2):317-330. doi:10. 1007/s11442-011-0847-4
    [28] Kuang Wenhui, 2012. Spatio-temporal patterns of intra-urban land use change in Beijing, China between 1984 and 2008. Chinese Geographical Science, 22(2):210-220. doi:10.1007/s 11769-012-0529-x
    [29] Lambin E F, Geist H J, Lepers E, 2003. Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources, 28(1):205-241. doi: 10.1146/annurev.energy.28.050302.105459
    [30] Li X, Yeh A G O, 2000. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, 14(2):131-152. doi: 10.1080/136588100240886
    [31] Li X M, Zhou W Q, Ouyang Z Y, 2013. Forty years of urban expansion in Beijing:what is the relative importance of physical, socioeconomic, and neighborhood factors? Applied Geography, 38:1-10. doi: 10.1016/j.apgeog.2012.11.004
    [32] Osman T, Divigalpitiya P, Arima T, 2016. Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on land use in the Giza Governorate, Greater Cairo Metropolitan region. International Journal of Urban Sciences, 20(3):407-426. doi: 10.1080/12265934.2016.1216327
    [33] Sacchi L V, Gasparri N I, 2016. Impacts of the deforestation driven by agribusiness on urban population and economic activity in the Dry Chaco of Argentina. Journal of Land Use Science, 11:523-537. https://doi.org/10.1080/1747423X.2015.1098739
    [34] Sakieh Y, Amiri B J, Danekar A et al., 2015. Scenario-based evaluation of urban development sustainability:an integrative modeling approach to compromise between urbanization suitability index and landscape pattern. Environment, Development and Sustainability, 17(6):1343-1365. doi:10.1007/s 10668-014-9609-7
    [35] Sangawongse S, Sun C H, Tsai B W, 2005. Urban growth and land cover change in Chiang Mai and Taipei:results from the SLEUTH model. Proceedings of the MODSIM 05 Conference. Melbourne, Australia, 2622-2628.
    [36] Shalaby Adel, Moghanm Farahat Saad, 2015. Assessment of urban sprawl on agricultural soil of northern Nile Delta of Egypt using RS and GIS. Chinese Geographical Science, 25(3):274-282. doi:10.1007/s 11769-015-0748-z
    [37] Silva E A, Clarke K C, 2002. Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26(6):525-552. doi:10. 1016/S0198-9715(01)00014-X
    [38] Singh A, 1989. Review Article Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6):989-1003. doi: 10.1080/01431168908903939
    [39] Sohl T L, Claggett P R, 2013. Clarity versus complexity:land-use modeling as a practical tool for decision-makers. Journal of Environmental Management, 129:235-243. doi: 10.1016/j.jenvman.2013.07.027
    [40] Solecki W D, Oliveri C, 2004. Downscaling climate change scenarios in an urban land use change model. Journal of Environmental Management, 72(1), 105-115. https://doi.org/10.1016/j.jenvman.2004.03.014
    [41] Stevens D, Dragicevic S, Rothley K, 2007. iCity:a GIS-CA modelling tool for urban planning and decision making. Environmental Modelling & Software, 22(6):761-773. doi:10.1016/j. envsoft.2006.02.004
    [42] Su D Z, 1998. GIS-based urban modelling:practices, problems, and prospects. International Journal of Geographical Information Science, 12(7):651-671. doi: 10.1080/136588198241581
    [43] World Bank, 2012. Turning Sri Lanka's Urban Vision into Policy and Action. The International Bank for Reconstruction and Development, the World Bank.
    [44] Wagner P D, Bhallamudi S M, Narasimhan B et al., 2016. Dynamic integration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment. Science of the Total Environment, 539:153-164. doi:10.1016/j.scitotenv. 2015.08.148
    [45] Wu X Q, Hu Y M, He H S et al., 2009. Performance evaluation of the SLEUTH Model in the Shenyang metropolitan area of Northeastern China. Environmental Modeling & Assessment, 14(2):221-230. doi: 10.1007/s10666-008-9154-6
    [46] Yang X J, 2010. Integration of remote sensing with GIS for urban growth characterization. In:Jiang B and Yao X (eds). Geospatial Analysis and Modelling of Urban Structure and Dynamics. Dordrecht:Springer, 223-250. doi: 10.1007/978-90-481-8572-6_12
    [47] Yuan F, Sawaya K E, Loeffelholz B C et al., 2005. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sensing of Environment. 98:317-328. https://doi.org/10.1016/j.rse.2005.08.006
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(319) PDF downloads(930) Cited by()

Proportional views
Related

Remote Sensing Data and SLEUTH Urban Growth Model: As Decision Support Tools for Urban Planning

doi: 10.1007/s11769-018-0946-6

Abstract: Sri Lanka is experiencing speedy urbanization by converting the agriculture land and other natural land cover into built-up land. The urban population of Sri Lanka is expected to reach to 60% by 2030 from 14% in 2010. The rapid growth in urban population and urban areas in Sri Lanka may cause serious socioeconomic disparities, if they are not handled properly. Thus, planners in Sri Lanka are in need of information about past and future urban growth patterns to plan a better and sustainable urban future for Sri Lanka. In this paper, we analyzed the characteristics of past land use and land cover trends in Matara City of Sri Lanka from 1980 to 2010 to assess the historic urban dynamics. The land use change detection analysis based on remote sensing datasets reveal that the conversion of homestead/garden and paddy into urban land is evident in Matara City. The historic urban trends are projected into the near future by using SLEUTH urban growth model to identify the hot spots of future urbanization and as well as the urban growth patterns in Matara City up to the basic administrative level, i.e., Grama Niladari Divisions (GND). The urban growth simulations for the year 2030 reveal that 29 GNDs out of 66 GNDs in Matara City will be totally converted into urban land. Whereas, 28 GNDs will have urban land cover from 75% to 99% by 2030. The urban growth simulations are further analyzed with respect to the proposed Matara city development plan by the Urban Development Authority (UDA) of Sri Lanka. The results show that the UDA's city development plan of Matara will soon be outpaced by rapid urbanization. Based on the calibration and validation results, the SLEUTH model proved to be a useful planning tool to understand the near future urbanization of Sri Lankan cities.

SERASINGHE PATHIRANAGE Inoka Sandamali, Lakshmi N. KANTAKUMAR, SUNDARAMOORTHY Sivanantharajah. Remote Sensing Data and SLEUTH Urban Growth Model: As Decision Support Tools for Urban Planning[J]. Chinese Geographical Science, 2018, 28(2): 274-286. doi: 10.1007/s11769-018-0946-6
Citation: SERASINGHE PATHIRANAGE Inoka Sandamali, Lakshmi N. KANTAKUMAR, SUNDARAMOORTHY Sivanantharajah. Remote Sensing Data and SLEUTH Urban Growth Model: As Decision Support Tools for Urban Planning[J]. Chinese Geographical Science, 2018, 28(2): 274-286. doi: 10.1007/s11769-018-0946-6
Reference (47)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return